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Abstract. The poles of theS-matrix for a two-channel model with square well potentials are
calculated. It is found that the trajectories of these poles in the complexk-plane for varying
coupling strength show avoided crossings. At the critical parameters the poles coincide to form
a double pole. Its presence is revealed by a symmetry property of the cross section.

1. Introduction

In this paper we address the problem of degeneracy of two resonant states or, more generally,
to the occurrence of double complex poles of theS-matrix.

In recent literature a number of cases of interfering resonances leading to degeneracy
have been described. Hernandez and Mondragon [1] considered a doublet of unbound
states in8Be as an example of accidental degeneracy of resonances. Kylstra and Joachain
[2] discussed double poles in the case of laser-assisted electron–atom scattering. Latinneet
al [3] studied degeneracies involving autoionizing states in complex atoms. Double poles
have been investigated as examples of non-exponential decay laws. Lassila and Ruuskanen
[4] examined atomic resonance fluorescence using a parametrized form of theT -matrix.
Bell and Goebels [5] proposed a one-channel double well potential model and a Lee-type
model of unstable particles as cases with double poles.

Here we describe another scenario for the origin of double poles using a simple two-
channel model with square well potentials. Although, in the past, such a model has been
used [6] in the context of resonance scattering theory, it has, to our knowledge, not been
reported in connection with double poles. We focus our investigation on the role of the
coupling strength in the generation of double poles. We present a study of the trajectories
of the poles of theS-matrix and show that critical values exist of the model parameters
which give rise to a double pole.

The situation of coupled channels, one of which is closed, is encountered a.o. in the study
of continuum effects of monopole and quadrupole degrees of freedom in4He [7]. It reveals
the appearence of Feshbach resonances above the monopole but below the quadrupole
threshold. However, the relation with the quadrupole eigenstates (in the uncoupled problem)
is not clear: some give rise to a resonance, some do not. In order to gain insight into this
situation we turn to an exactly soluble model, in particular one that allows us to vary the
coupling strength between the channels because we feel this strength will be a determining
factor. Indeed, the trajectory as a function of the coupling strength of a pole of theS-matrix
reveals the relation of resonances in the coupled problem to states (bound or continuum)
in the uncoupled problem. Changing the potential parameters (other than the coupling
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strength) modifies the aforementioned trajectories, but we do observe regimes for which the
trajectories exhibit a similar topological structure. The occurrence of a double pole at a
critical potential parameter value signals the transition from one such regime to another.

2. Model

We consider a two-channel square well model with a single coordinatex and massm.
We denote the channel potentials byUi (i = 1, 2) and the coupling matrix element by
U12 = U21. Taking a two component vector9i for the wavefunction, the Schrödinger
equation has the following matrix representation (using units such that ¯h = 1 andm = 1):(− 1

2
d2

dx2 + U1 U12

U21 − 1
2

d2

dx2 + U2

)(
91

92

)
= E

(
91

92

)
. (1)

We recall that the coordinatex can be interpreted either as a one-dimensional Cartesian
coordinate (in which case the potentials have an infinite wall atx = 0) or, equivalently, as a
three-dimensional radial coordinate (in which case the potentials are spherically symmetric
and we consider s-waves only). For the potentialsUi we choose square wells with depth
Vi and equal rangea and we suppose the couplingU12 to be square also with heightC and
the same rangea. We assume further that the bottom ofU2 is shifted byD againstU1.

We are interested in elastic scattering resonances and assume channel 1 to be open and
channel 2 to be closed. The origin of the energy scale is chosen at the threshold of channel
1 and we denoteE = 1

2k
2, wherek is the momentum of the incoming wave.

Resonances are related to the poles of the analytically continuedS-matrix in the complex
plane. TheS-matrix for momentumk is introduced as usual by writing the asymptotic form
of the wavefunction as

91(x →∞) ∼ e−ikx − S(k)eikx . (2)

For the square well model under consideration theS-matrix can be calculated exactly with
the help of the logarithmic derivative in the inner region. The solution of (1) in the inner
region (0 < x < 1) can be found by explicit calculation and has the form (using a unit of
length such thata = 1)

9i = Ai sin(Kx)+ Bi sin(Lx) (3)

with

K2 = k2+ 2V1−D +
√
D2+ 4C2 (4)

L2 = k2+ 2V1−D −
√
D2+ 4C2. (5)

In this section we restrict ourselves to a simple two-parameter version of the model by
assuming that both square wells have the same bottom energy (D = 0) and the well in the
closed channel to have infinite depth (V2 = ∞). With this simplification, the condition for
k to be a pole of theS-matrix in the complexk-plane is found to be:

K cotK + L cotL− 2ik = 0. (6)

We shall see later that the parametersD and V2 do not essentially alter the qualitative
features of the scenario of double pole generation that are presented here.
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3. Results

The main purpose of this paper is to study the position of the poles in the complex plane
and to search for double poles by variation of the model parameters. As solutions of (6)
the poles constitute a two-parameter family of points in thek-plane. In the discussion of
scattering phenomena it is sufficient to consider only the fourth quadrant where Re(k) > 0
and Im(k) 6 0.

For C = 0, the channels are uncoupled and the problem is that of scattering by the
square well in the first channel. This case is well known and has been studied in detail
by Nussenzveig [8]. TheS-matrix poles in the complex plane describe trajectories as the
potential strengthV1 is increased from 0 to∞. The poles in the lower half of thek-
plane form symmetric pairs (mirror images with respect to the imaginary axis) which will
move towards each other and, for a specific potential depth, coalesce into a double pole
(virtual state) on the imaginary axis. Apart from these exceptional situations all poles of
the S-matrix for the square well potential are single poles.

In the coupled case two types of poles occur. The first type (hereafter referred to as
type 1) corresponds to the poles of the uncoupled square well and can be classified by the
integern according to their limiting position forC → 0 andV1→ 0

lim
V1→0,C→0

k(1)n = nπ − i∞. (7)

The second type of poles (referred to as type 2) are associated with the bound states in the
closed channel. For weak coupling they appear as sharp resonances at a position determined
by the energy of the bound states ofU2. These resonances can be labelled with an integer
m according to their limiting position forC → 0 (in our case the bound states of an infinite
square well)

lim
C→0

k(2)m =
√
(mπ)2− 2V1− i0. (8)

Equation (6) is solved by a numerical procedure. The method of steepest descent is
used to locate the zero minima of the modulus of the left-hand side of (6) for a specific
parameter set. For smallV1 the two types of poles for the same integer label lie in the same
region of the complex plane. This permits a local study of the behaviour ofk(1)n (V , C) and
k(2)n (V , C) in this particular region of thek-plane.

We consider the trajectories for constant potential depth and increasing coupling. The
type 1 pole starts, forC = 0, at a position determined by Nussenzveig’s solution of the
uncoupled system. The type 2 pole starts, for weak coupling, near the real axis at a position
(see (8)) determined by a bound state of the closed channel. For increasing coupling
both trajectories first approach each other and then, for largerC, they show an ‘avoided
crossing’. What happens next depends on the value ofV1. Figure 1(a) shows the trajectories
for V1 = 2. The type 1 pole moves towards the imaginary axis where it coincides with its
image of the third quadrant. This is an analogous behaviour to Nussenzveig’s uncoupled
case. The type 2 trajectory bends back towards the real axis and it reaches, for a large
C, a bound state in the continuum, i.e. where Im(k) → 0. In figure 1(c), the trajectories
for potential strengthV1 = 3 are plotted. We note that poles interchange their identity at
the avoided crossing. Now the type 1 trajectory deviates towards the positive real axis and
the pole leads to a bound state in the continuum, whereas the type 2 trajectory approaches
the negative imaginary axis and produces a virtual state. For a critical value ofV1 both
trajectories collide into a double, fully degenerate, pole at a critical value ofC. This is
shown in figure 1(b). We note that for a range of non-critical values ofV1 we obtain ‘half’
degeneracies, i.e. poles with equal Re(k) or Im(k). These occur at the sameC-value as the
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Figure 1. Trajectories ofS-matrix poles for the coupled channel model with fixed potential
strengthV1 and variable coupling strengthC (indicated by dots). (a) V1 = 2, type 1 and type 2
trajectories have an avoided crossing; (b) V1 = 2.1, both types of poles coincide; (c) V1 = 3,
type 1 and type 2 trajectories interchange identity at the avoided crossing. The open circles
indicate the degenerate poles.

double poles and correspond to the point of closest approach of the trajectories as seen in
figure 1.

4. Discussion

A characteristic feature of the degeneracy of both type of poles is apparent in the cross
section. At the critical parameters the cross sectionσ (divided by the unitarity limit 4π/k2)
is a symmetric function ofk about a momentum window close to the real part of the double
pole. To illustrate this symmetry we plotσ(k)k2/4π in figure 2 at the critical potential.
This result is similar to the cross section in laser-assisted electron–atom scattering obtained
by Kylstra and Joachian and is also reported in connection with non-exponential decay by
Lassila and Ruuskanen. In contrast to the assertion in [2], the symmetry of the cross section
is not in general a unique signature of the double poles. Indeed, in the case of so-called
‘half degeneracies’, where only the real part or imaginary part of both poles are equal, the
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Figure 2. The cross sectionσ(k)k2/4π for critical potential depthV1 = 2.1 and different
couplings. (a) C = 2.1, (b) C = 3.1, (c) C = 4.1. For the critical coupling (case b), the two
peaks are symmetric in an interval around the window momentum.

Table 1. Critical parameters for different branches and the position of the double pole at Re(k)

and Im(k).

n = 1 n = 2 n = 3

V cr 2.1 2.9 3.4
Ccr 3.1 5.7 8.5
Re(k) 3.3 5.8 9.3
Im(k) −0.9 −1.1 −1.2

cross section is also symmetric (see figure 3).
In section 3 we presented the mechanism of formation of double poles using the first

branch (n = 1) of the solutions of equation (6). The same scenario also applies to the other
branches in other regions of the complexk-plane. This happens at other (higher) critical
values of the parametersV andC. In table 1 we list the values of the critical parameters
for differentn.

So far we have used the simplified model withD = 0 andV2 = ∞. We have tested the
results given above and found them to be robust against the variation of these parameters.
If the bottom ofU2 is displaced relative toU1 the only effect is to shift the position of
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Figure 3. The cross sectionσ(k)k2/4π for the degenerate polesC = 3.1 and different values
for the potentials strength. (a) V = 2: the poles have an equal real part, (b) V = 2.1: a
double pole, (c) V = 3: the poles have an equal imaginary part. In all cases the cross section
is symmetric about a window momentum.

type 2 poles on the real axis but the whole picture of avoided crossings and double poles
remains unaltered. The same remark applies whenU2 is taken as a finite square well.

5. Conclusion

We have calculated the poles of theS-matrix in a two-channel model where the channel
potentials and the coupling are chosen as square wells with the same range. We looked at
the elastic scattering region where one channel is open and the other is closed. We have two
types of poles: one is associated with the resonances of the uncoupled problem, the other
with the bound states of the closed channel. The trajectories of the poles in the complex
k-plane show avoided crossings as the coupling strength is changed. At critical values of
the model parameters the two types of poles are fully degenerate and form a double pole.
The cross section corresponding to the critical case has two peaks symmetric with respect
to a window momentum. The cross section corresponding to the case of half degeneracy
also shows symmetric behaviour.

In the particular model used here the double poles lie far from the real axis and can
therefore not readily be associated with well pronounced resonances. Also, the double pole
occurs at a large value of the coupling strength. This calculation is a presentation of a
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simple mechanism that provides insight into the generation and behaviour of double poles.
We cannot conclude as yet that the scenario presented here is a generic one. However, the
results suggest a more detailed study of a two-channel model with more realistic potentials.
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